About me
I am currently working as a postdoctoral researcher in Deep Learning Theory team at RIKEN AIP.
Research Interests
- Bayesian statistics
- Spatio-temporal modelling
- Statistical learning theory for large-scale model
Recent Papers
Preprint
Wakayama, T., and Banerjee, S. (2024), “Process-based Inference for Spatial Energetics Using Bayesian Predictive Stacking”. arXiv preprint, arXiv:2405.09906, code.
Wakayama, T. and Sugasawa, S. (2024), “Ensemble Prediction via Covariate-dependent Stacking”. arXiv preprint, arXiv:2408.09755, code.
Wakayama, T. (2024), “Bayesian Inference for Consistent Predictions in Overparameterized Nonlinear Regression”. arXiv preprint, arXiv:2404.04498, code.
Publication
Wakayama, T., Sugasawa, S., and Kobayashi, G. (2025+), “Similarity-based Random Partition Distribution for Clustering Functional Data”. Journal of the Royal Statistical Society, Series C. arXiv:2308.01704, code.
Wakayama, T. and Sugasawa, S. (2024), “Spatiotemporal Factor Models for Functional Data with Application to Population Map Forecast”. Spatial Statistics. (publication, code)
Wakayama, T. and Imaizumi, M. (2024), “Fast Convergence on Perfect Classification for Functional Data”. Statistica Sinica. (publication)
Recent Talks
Wakayama, T., and Imaizumi, M. (2025), “Bayesian Analysis for Over-parameterized Linear Model via Effective Spectra”, Objective Bayes Methodology Conference 2025, Athens, Greece, June 2025.
Wakayama, T., and Banerjee, S. (2024), “Process-based Inference for Spatial Energetics Using Bayesian Predictive Stacking”, 2024 IMS International Conference on Statistics and Data Science, Nice, France, December 2024.
Wakayama, T., Sugasawa, S., Kobayashi, G. “Similarity-based Random Partition Distribution for Clustering Functional Data”, ISBA World Meeting 2024, Venice, Italy, June 2024.
Recent Awards & Grants
2023/10-2025/3 ACT-X「次世代AIを築く数理・情報科学の革新」, JST.
2023 ISI東京大会記念奨励賞, 日本統計学会
2022/04- 日本学術振興会特別研究員DC1, JSPS.
Education
Ph.D. in Economics, The University of Tokyo, 2025
Dissertation: “Nonparametric Bayesian Statistics for High-dimensional Data”
Supervisor: Masaaki Imaizumi
M.S. in Economics, The University of Tokyo, 2022
Master’s Thesis: “Trend Filtering for Functional Data: Optimization and Bayesian Approach”
Supervisor: Shonosuke Sugasawa
B.S. in Engineering, Osaka Prefecture University, 2020