Papers
Publications
Wakayama, T. and Sugasawa, S. (2024), “Spatiotemporal Factor Models for Functional Data with Application to Population Map Forecast”. Spatial Statistics. (publication, code)
Wakayama, T. and Sugasawa, S. (2024), “Functional Horseshoe Smoothing for Functional Trend Estimation”. Statistica Sinica. (publication, arXiv)
Wakayama, T. and Imaizumi, M. (2024), “Fast Convergence on Perfect Classification for Functional Data”. Statistica Sinica. (publication, arXiv)
Wakayama, T. and Sugasawa, S. (2023), “Trend Filtering for Functional Data”. Stat. (open access, code)
Preprints
Wakayama, T., and Banerjee, S. (2024), “Process-based Inference for Spatial Energetics Using Bayesian Predictive Stacking”. arXiv preprint, arXiv:2405.09906, code.
Wakayama, T. and Sugasawa, S. (2024), “Ensemble Prediction via Covariate-dependent Stacking”. arXiv preprint, arXiv:2408.09755, code.
Jin, Y., Wakayama, T., Jiang, R., and Sugasawa, S. (2024), “Clustered Factor Analysis for Multivariate Spatial Data”. arXiv preprint, arXiv:2409.07018, code.
Wakayama, T. (2024), “Bayesian Inference for Consistent Predictions in Overparameterized Nonlinear Regression”. arXiv preprint, arXiv:2404.04498, code.
Wakayama, T., and Matsui, H. (2023), “Functional Data Regression Reconciles with Excess Bases”. arXiv preprint, arXiv:2308.01724, code.
Wakayama, T., Sugasawa, S., and Kobayashi, G. (2023), “Similarity-based Random Partition Distribution for Clustering Functional Data”. arXiv preprint, arXiv:2308.01704, code.
Wakayama, T. and Imaizumi, M. (2023), “Bayesian Analysis for Over-parameterized Linear Model without Sparsity”. arXiv preprint, arXiv:2305.15754.